Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
Gates Open Res ; 6: 148, 2022.
Article in English | MEDLINE | ID: covidwho-20237340

ABSTRACT

Background: In many countries, non-pharmaceutical interventions to limit severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transmission resulted in significant reductions in other respiratory viruses. However, similar data from Africa are limited. We explored the extent to which viruses such as influenza and rhinovirus co-circulated with SARS-CoV-2 in The Gambia during the COVID-19 pandemic.  Methods: Between April 2020 and March 2022, respiratory viruses were detected using RT-PCR in nasopharyngeal swabs from 1397 participants with influenza-like illness. An assay to detect SARS-CoV-2 and a viral multiplex RT-PCR assay was used as previously described  to detect influenza A and B, respiratory syncytial virus (RSV) A and B, parainfluenza viruses 1-4, human metapneumovirus (HMPV), adenovirus, seasonal coronaviruses (229E, OC43, NL63) and human rhinovirus. Results: Overall virus positivity was 44.2%, with prevalence higher in children <5 years (80%) compared to children aged 5-17 years (53.1%), adults aged 18-50 (39.5%) and >50 years (39.9%), p<0.0001. After SARS-CoV-2 (18.3%), rhinoviruses (10.5%) and influenza viruses (5.5%) were the most prevalent. SARS-CoV-2 positivity was lower in children <5 (4.3%) and 5-17 years (12.7%) than in adults aged 18-50 (19.3%) and >50 years (24.3%), p<0.0001. In contrast, rhinoviruses were most prevalent in children <5 years (28.7%), followed by children aged 5-17 (15.8%), adults aged 18-50 (8.3%) and >50 years (6.3%), p<0.0001. Four SARS-CoV-2 waves occurred, with 36.1%-52.4% SARS-CoV-2 positivity during peak months. Influenza infections were observed in both 2020 and 2021 during the rainy season as expected (peak positivity 16.4%-23.5%). Peaks of rhinovirus were asynchronous to the months when SARS-CoV-2 and influenza peaked. Conclusion: Our data show that many respiratory viruses continued to circulate during the COVID-19 pandemic in The Gambia, including human rhinoviruses, despite the presence of NPIs during the early stages of the pandemic, and influenza peaks during expected months.

2.
Gates open research ; 6, 2022.
Article in English | EuropePMC | ID: covidwho-2218712

ABSTRACT

Background: In many countries, non-pharmaceutical interventions to limit severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transmission resulted in significant reductions in other respiratory viruses. However, similar data from Africa are limited. We explored the extent to which viruses such as influenza and rhinovirus co-circulated with SARS-CoV-2 in The Gambia during the COVID-19 pandemic. Methods: Between April 2020 and March 2022, respiratory viruses were detected using RT-PCR in nasopharyngeal swabs from 1397 participants with influenza-like illness. An assay to detect SARS-CoV-2 and a viral multiplex RT-PCR assay was used as previously described to detect influenza A and B, respiratory syncytial virus (RSV) A and B, parainfluenza viruses 1-4, human metapneumovirus (HMPV), adenovirus, seasonal coronaviruses (229E, OC43, NL63) and human rhinovirus. Results: Overall virus positivity was 44.2%, with prevalence higher in children <5 years (80%) compared to children aged 5-17 years (53.1%), adults aged 18-50 (39.5%) and >50 years (39.9%), p<0.0001. After SARS-CoV-2 (18.3%), rhinoviruses (10.5%) and influenza viruses (5.5%) were the most prevalent. SARS-CoV-2 positivity was lower in children <5 (4.3%) and 5-17 years (12.7%) than in adults aged 18-50 (19.3%) and >50 years (24.3%), p<0.0001. In contrast, rhinoviruses were most prevalent in children <5 years (28.7%), followed by children aged 5-17 (15.8%), adults aged 18-50 (8.3%) and >50 years (6.3%), p<0.0001. Four SARS-CoV-2 waves occurred, with 36.1%-52.4% SARS-CoV-2 positivity during peak months. Influenza infections were observed in both 2020 and 2021 during the rainy season as expected (peak positivity 16.4%-23.5%). Peaks of rhinovirus were asynchronous to the months when SARS-CoV-2 and influenza peaked. Conclusion: Our data show that many respiratory viruses continued to circulate during the COVID-19 pandemic in The Gambia, including human rhinoviruses, despite the presence of NPIs during the early stages of the pandemic, and influenza peaks during expected months.

3.
Frontiers in nutrition ; 9, 2022.
Article in English | EuropePMC | ID: covidwho-2073783

ABSTRACT

The Covid pandemic has exposed fissures of inequality through heightened food insecurity and nutritional deficiency for vulnerable social cohorts with limited coping mechanisms. Given the multi-dimensional pathways through which its effects have been felt, several researchers have highlighted the need to analyse the pandemic in specific contexts. Using random and fixed effect regression models, this study analyzed longitudinal survey data collected from 103 Mandinka households in rural and urban Gambia. The study employed convenience and snowball sampling and involved the monthly collection of detailed income, food consumption, expenditure, sourcing, migration, health, and coping mechanism data through mobile phone interviews which yielded 676 observations. Food insecurity was manifest in terms of quality, not quantity, and spread unevenly across food types and households. Dietary outcomes and sourcing strategies were associated with location, improved sanitation, household size, changes in monthly income, Covid policy stringency, and Covid cases but these associations varied by food group. Staples were the most frequently consumed food group, and dark green vegetables were the least. Rural communities were more likely to eat more healthy millets but much less likely to consume dairy products or roots and tubers. Access to own production was also important for Vitamin A-rich foods but higher incomes and markets were key for protein and heme-iron-rich foods. Tighter Covid policy stringency was negatively associated with dietary diversity and, along with fear of market hoarding, was positively associated with reliance on a range of consumption and production coping mechanisms. Resilience was higher in larger households and those with improved water and sanitation. The number of Covid cases was associated with higher consumption of protein-rich foods and greater reliance on own produced iron-rich foods. Very few households received Government aid and those that did already had access to other income sources. Our findings suggest that the nature of food insecurity may have evolved over time during the pandemic. They also reiterate not only the importance of access to markets and employment but also that the capacity to absorb affordability shocks and maintain food choices through switching between sources for specific nutritious food groups varied by household and location.

4.
Clin Infect Dis ; 74(10): 1776-1785, 2022 05 30.
Article in English | MEDLINE | ID: covidwho-1708084

ABSTRACT

BACKGROUND: Households are hot spots for severe acute respiratory syndrome coronavirus 2 transmission. METHODS: This prospective study enrolled 100 coronavirus disease 2019 (COVID-19) cases and 208 of their household members in North Carolina though October 2020, including 44% who identified as Hispanic or non-White. Households were enrolled a median of 6 days from symptom onset in the index case. Incident secondary cases within the household were detected using quantitative polymerase chain reaction of weekly nasal swabs (days 7, 14, 21) or by seroconversion at day 28. RESULTS: Excluding 73 household contacts who were PCR-positive at baseline, the secondary attack rate (SAR) among household contacts was 32% (33 of 103; 95% confidence interval [CI], 22%-44%). The majority of cases occurred by day 7, with later cases confirmed as household-acquired by viral sequencing. Infected persons in the same household had similar nasopharyngeal viral loads (intraclass correlation coefficient = 0.45; 95% CI, .23-.62). Households with secondary transmission had index cases with a median viral load that was 1.4 log10 higher than those without transmission (P = .03), as well as higher living density (more than 3 persons occupying fewer than 6 rooms; odds ratio, 3.3; 95% CI, 1.02-10.9). Minority households were more likely to experience high living density and had a higher risk of incident infection than did White households (SAR, 51% vs 19%; P = .01). CONCLUSIONS: Household crowding in the context of high-inoculum infections may amplify the spread of COVID-19, potentially contributing to disproportionate impact on communities of color.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiology , Crowding , Family Characteristics , Humans , Prospective Studies , United States , Viral Load
5.
Clin Infect Dis ; 73(9): e2823, 2021 11 02.
Article in English | MEDLINE | ID: covidwho-1704269
6.
Am J Trop Med Hyg ; 106(1): 156-159, 2021 11 24.
Article in English | MEDLINE | ID: covidwho-1534405

ABSTRACT

Point-of-care (POC) tests to detect SARS-CoV-2 antibodies offer quick assessment of serostatus after natural infection or vaccination. We compared the field performance of the BioMedomics COVID-19 IgM/IgG Rapid Antibody Test against an ELISA in 303 participants enrolled in a SARS-CoV-2 household cohort study. The rapid antibody test was easily implemented with consistent interpretation across 14 users in a variety of field settings. Compared with ELISA, detection of seroconversion lagged by 5 to 10 days. However, it retained a sensitivity of 90% (160/177, 95% confidence interval [CI] 85-94%) and specificity of 100% (43/43, 95% CI 92-100%) for those tested 3 to 5 weeks after symptom onset. Sensitivity was diminished among those with asymptomatic infection (74% [14/19], 95% CI 49-91%) and early in infection (45% [29/64], 95% CI 33-58%). When used appropriately, rapid antibody tests offer a convenient way to detect symptomatic infections during convalescence.


Subject(s)
Antibodies, Viral/blood , COVID-19/diagnosis , Enzyme-Linked Immunosorbent Assay , Point-of-Care Testing , SARS-CoV-2/immunology , COVID-19/immunology , Cohort Studies , Enzyme-Linked Immunosorbent Assay/standards , Family Characteristics , Humans , Point-of-Care Testing/standards , SARS-CoV-2/isolation & purification
7.
Diagn Microbiol Infect Dis ; 101(2): 115469, 2021 Oct.
Article in English | MEDLINE | ID: covidwho-1385401

ABSTRACT

Alternatives to nasopharyngeal sampling are needed to increase capacity for SARS-CoV-2 testing. Among 275 participants, we piloted the collection of nasal mid-turbinate swabs amenable to self-testing, including polyester flocked swabs as well as 3D-printed plastic lattice swabs, placed into viral transport media or an RNA stabilization agent. Flocked nasal swabs identified 104/121 individuals who were PCR-positive for SARS-CoV-2 by nasopharyngeal sampling (sensitivity 87%, 95% CI 79-92%), missing those with low viral load (<106 viral copies/mL). 3D-printed nasal swabs showed similar sensitivity. When nasal swabs were placed directly into RNA preservative, the mean 1.4 log decrease in viral copies/uL compared to nasopharyngeal samples was reduced to <1 log, even when samples were left at room temperature for up to 7 days. We also evaluated pooling strategies that involved pooling specimens in the lab versus pooling swabs at the point of collection, finding both successfully detected samples with >105 viral copies/mL.


Subject(s)
COVID-19 Nucleic Acid Testing/methods , COVID-19/diagnosis , SARS-CoV-2/isolation & purification , Health Resources/supply & distribution , Humans , Limit of Detection , Nasopharynx/virology , RNA, Viral/genetics , SARS-CoV-2/genetics , Self-Testing , Specimen Handling/instrumentation , Specimen Handling/methods , Turbinates/virology , Viral Load
8.
Emerg Infect Dis ; 27(8): 2064-2072, 2021 Aug.
Article in English | MEDLINE | ID: covidwho-1319582

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic is evolving differently in Africa than in other regions. Africa has lower SARS-CoV-2 transmission rates and milder clinical manifestations. Detailed SARS-CoV-2 epidemiologic data are needed in Africa. We used publicly available data to calculate SARS-CoV-2 infections per 1,000 persons in The Gambia. We evaluated transmission rates among 1,366 employees of the Medical Research Council Unit The Gambia (MRCG), where systematic surveillance of symptomatic cases and contact tracing were implemented. By September 30, 2020, The Gambia had identified 3,579 SARS-CoV-2 cases, including 115 deaths; 67% of cases were identified in August. Among infections, MRCG staff accounted for 191 cases; all were asymptomatic or mild. The cumulative incidence rate among nonclinical MRCG staff was 124 infections/1,000 persons, which is >80-fold higher than estimates of diagnosed cases among the population. Systematic surveillance and seroepidemiologic surveys are needed to clarify the extent of SARS-CoV-2 transmission in Africa.


Subject(s)
COVID-19 , Africa , Gambia/epidemiology , Humans , Pandemics , SARS-CoV-2 , Seroepidemiologic Studies
9.
BMJ Glob Health ; 6(6)2021 06.
Article in English | MEDLINE | ID: covidwho-1276952

ABSTRACT

Health systems in sub-Saharan Africa have remained overstretched from dealing with endemic diseases, which limit their capacity to absorb additional stress from new and emerging infectious diseases. Against this backdrop, the rapidly evolving COVID-19 pandemic presented an additional challenge of insufficient hospital beds and human resource for health needed to deliver hospital-based COVID-19 care. Emerging evidence from high-income countries suggests that a 'virtual ward' (VW) system can provide adequate home-based care for selected patients with COVID-19, thereby reducing the need for admissions and mitigate additional stress on hospital beds. We established a VW at the Medical Research Council Unit, The Gambia at the London School of Hygiene and Tropical Medicine, a biomedical research institution located in The Gambia, a low-income west African country, to care for members of staff and their families infected with COVID-19. In this practice paper, we share our experience focusing on the key components of the system, how it was set up and successfully operated to support patients with COVID-19 in non-hospital settings. We describe the composition of the multidisciplinary team operating the VW, how we developed clinical standard operating procedures, how clinical oversight is provided and the use of teleconsultation and data capture systems to successfully drive the process. We demonstrate that using a VW to provide an additional level of support for patients with COVID-19 at home is feasible in a low-income country in sub-Saharan Africa. We believe that other low-income or resource-constrained settings can adopt and contextualise the processes described in this practice paper to provide additional support for patients with COVID-19 in non-hospital settings.


Subject(s)
COVID-19 , Africa South of the Sahara , Gambia , Hospitals , Humans , Pandemics , SARS-CoV-2
11.
J Nutr ; 151(7): 1854-1878, 2021 07 01.
Article in English | MEDLINE | ID: covidwho-1226546

ABSTRACT

BACKGROUND: Many nutrients have powerful immunomodulatory actions with the potential to alter susceptibility to coronavirus disease 2019 (COVID-19) infection, progression to symptoms, likelihood of severe disease, and survival. OBJECTIVE: The aim was to review the latest evidence on how malnutrition across all its forms (under- and overnutrition and micronutrient status) may influence both susceptibility to, and progression of, COVID-19. METHODS: We synthesized information on 13 nutrition-related components and their potential interactions with COVID-19: overweight, obesity, and diabetes; protein-energy malnutrition; anemia; vitamins A, C, D, and E; PUFAs; iron; selenium; zinc; antioxidants; and nutritional support. For each section we provide: 1) a landscape review of pertinent material; 2) a systematic search of the literature in PubMed and EMBASE databases, including a wide range of preprint servers; and 3) a screen of 6 clinical trial registries. All original research was considered, without restriction to study design, and included if it covered: 1) severe acute respiratory syndrome coronavirus (CoV) 2 (SARS-CoV-2), Middle East respiratory syndrome CoV (MERS-CoV), or SARS-CoV viruses and 2) disease susceptibility or 3) disease progression, and 4) the nutritional component of interest. Searches took place between 16 May and 11 August 2020. RESULTS: Across the 13 searches, 2732 articles from PubMed and EMBASE, 4164 articles from the preprint servers, and 433 trials were returned. In the final narrative synthesis, we include 22 published articles, 38 preprint articles, and 79 trials. CONCLUSIONS: Currently there is limited evidence that high-dose supplements of micronutrients will either prevent severe disease or speed up recovery. However, results of clinical trials are eagerly awaited. Given the known impacts of all forms of malnutrition on the immune system, public health strategies to reduce micronutrient deficiencies and undernutrition remain of critical importance. Furthermore, there is strong evidence that prevention of obesity and type 2 diabetes will reduce the risk of serious COVID-19 outcomes. This review is registered at PROSPERO as CRD42020186194.


Subject(s)
Anemia/epidemiology , COVID-19/epidemiology , COVID-19/immunology , Diabetes Mellitus/epidemiology , Nutritional Status , Obesity/epidemiology , Protein-Energy Malnutrition/epidemiology , Antioxidants/metabolism , COVID-19/prevention & control , COVID-19/therapy , Comorbidity , Dietary Supplements , Disease Progression , Fatty Acids, Omega-3/immunology , Fatty Acids, Omega-6/immunology , Humans , Iron/immunology , Nutritional Support , SARS-CoV-2 , Selenium/immunology , Severity of Illness Index , Vitamins/immunology , Zinc/immunology
SELECTION OF CITATIONS
SEARCH DETAIL